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Abstract. The propagation and roughening of a fluid-gas interface through a disordered medium in the case
of capillary driven spontaneous imbibition is considered. The system is described by a conserved (model
B) phase-field model, with the structure of the disordered medium appearing as a quenched random field
α(x). The flow of liquid into the medium is obtained by imposing a non-equilibrium boundary condition
on the chemical potential, which reproduces Washburn’s equation H ∼ t1/2 for the slowing down motion of
the average interface position H. The interface is found to be superrough, with global roughness exponent
χ ≈ 1.25, indicating anomalous scaling. The spatial extent of the roughness is determined by a length scale
ξ× ∼ H1/2 arising from the conservation law. The interface advances by avalanche motion, which causes
temporal multiscaling and qualitatively reproduces the experimental results of Horváth and Stanley (Phys.
Rev. E 52, 5166 (1995)) on the temporal scaling of the interface.

PACS. 47.55.Mh Flows through porous media – 05.40.-a Fluctuation phenomena, random processes,
and Brownian motion – 68.35.Ct Interface structure and roughness

1 Introduction

The dynamics of driven interfaces in disordered media is
a subject of intense interest in nonequilibrium statistical
mechanics. It is well established that for sufficiently strong
driving, the interface feels an effective smeared out “ther-
mal” noise and its fluctuations present all the typical phe-
nomena of scale invariance of driven systems [1]. In the
opposite case of weak driving, the quenched nature of the
noise becomes apparent and the interface may reach a
pinned state, characterised by completely different scaling
exponents [2].

An apparently easy experiment to perform is to mon-
itor the motion of an invading liquid front in a porous
medium. Many experiments have been done with Hele-
Shaw cells [3–7], and the spontaneous imbibition of water
in paper has also been considered [8–17]. In this last case,
capillary forces arising from the porous structure drive
the liquid until loss of water by evaporation or hydro-
static pressure balance the driving. The eventual pinning
of the front has received a lot of attention [8,9,12,14],
and some experiments also examined the complete dy-
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namical process [10,13,15,17]. It is generally believed that
phenomena in the critical region of the depinning transi-
tion can be described by local theories, i.e., the physics is
governed by an equation that couples the interface locally
with itself and the quenched randomness [2]. The spatial
configurations of a pinned imbibition front seem to exhibit
scaling properties well described by the “directed percola-
tion depinning” (DPD, or quenched Kardar-Parisi-Zhang,
QKPZ) universality class [8,9,12,18]. An intuitively moti-
vated lattice model of DPD compares well to experimental
findings on the stopped front [8,9], and a modified version
of the model addresses the influence of evaporation on the
scaling properties of the pinned front [12].

However, these models neglect the fact that liquid has
to be transported through the medium in order to drive
the front, a nontrivial phenomenon in itself [19–21]. For
example, viscous fluid transport explains why the invading
front continuously slows down even without evaporation
or gravity, a result that has been well-established in the
literature [22–24]. In local models this has to be put in
rather artificially [12]. The temporal correlations of the
fluctuations should also reflect this nonlocality. It is thus
doubtful whether any local model can explain the exper-
imental results of Horváth and Stanley, focusing on the
dynamical scaling of the interface [13].
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The main concern in this paper is to analyse in detail a
simple model of a propagating liquid-gas interface in a dis-
ordered medium, already introduced in reference [25]. The
companion paper [24] presents a general overview of the
experimental and macroscopic aspects of imbibition and
discusses in particular the role of the fluid conservation
law. The main goal in building the present model is thus to
incorporate local liquid conservation to the interfacial dy-
namics. In Section 2, it is shown that this can be achieved
through a generalised Cahn-Hilliard equation. The model
can then be applied to two different physical situations:
a freely rising front, and a front propagating against a
steady motion of the paper towards the liquid reservoir,
leading to stationary fluctuations. A central feature of the
model is the existence of a length scale ξ×, emerging from
the interplay between interfacial tension and liquid con-
servation. This reflects the inherently non-local nature of
the dynamics. The dynamical evolution of the model is
numerically integrated in Section 3, for the two different
setups. In Section 4 further implications of our model-
ing are discussed, and dynamical scaling in the experi-
ments of Horváth and Stanley [13] is reinterpreted. We
conclude with suggestions for future experimental work.
The Appendices contain generalisations of the model to
cases where gravity and/or evaporation might be impor-
tant and a brief description of the steps required to obtain
the interface equation (Eq. (9)).

2 Phase field model of imbibition

2.1 Definition of the model

A full model of the dynamics of a liquid invading a random
medium based on a microscopic treatment is a formidable
problem. The dynamics of the advancing interface be-
tween the liquid and the (dry) solid should however be
amenable to a discussion at the coarse grained level. In
this spirit, a phase-field model is used to represent the
spatial configuration of wet and dry “phases”. The field
of interest is a locally conserved quantity φ(x, t), de-
fined on the half-plane {x ≡ (x, y)|y ≥ 0}, with values
φ= +1(−1) for the wet (dry) phase. A free energy of the
formF{φ} =

∫
ddx [(∇φ)2/2+V (φ)] is chosen, with a dou-

ble well potential V (φ) of the standard Ginzburg-Landau
form, to which is added a linear tilt,

V (x, φ(x, t)) ≡ −1
2
φ2(x, t) +

1
4
φ4(x, t) − α(x)φ(x, t).

(1)

The double well potential, together with the gradient
term, ensures the existence of a well-defined interface, and
the quenched random field α(x) represents the random
(coarse grained) structure of the medium. The first and
the second moments associated with the underlying dis-
tribution of the random medium are given by 〈α(x)〉= ᾱ,
and 〈α(x)α(x′)〉−ᾱ2 =(∆α)2δ(x−x′). It is thus assumed
that α is spatially uncorrelated, which may be a good ap-
proximation in the case of ordinary paper (the areal mass
density has only short-range correlations [26]).

The dynamics of the conserved variable φ(x, t) is de-
termined by a continuity equation ∂tφ +∇·j = 0, where
the current j(x, t) = −∇µ(x, t) is related to the gradi-
ent of the chemical potential µ(x, t)≡−δF/δφ(x, t). The
resulting equation of motion,

∂tφ(x, t) = ∇2µ(x, t)

= ∇2
[
−φ(x, t) + φ3(x, t)−∇2φ(x, t) − α(x)

]
,

(2)

is essentially the Cahn-Hilliard equation [27], also used
to study critical fluctuations and phase ordering in pres-
ence of a conservation law (model B dynamics [28,29]).
The variable α(x) here plays the role of the local chemical
potential at the interface thus controlling the flux.

In model B dynamics [29], the domain walls are driven
by the difference between incoming and outgoing current
j=−∇µ. In the sharp interface limit, and for a slowly mov-
ing front, µ(x, t) changes quasistatically, always satisfying
∇2µ=0 in the bulk, plus the appropriate boundary condi-
tions. At the interface, µ must obey the Gibbs-Thomson
boundary condition

∆φ µ|int = ∆V − σK, (3)

where K is the curvature, σ = 2
√

2/3 is the surface ten-
sion of the model, the miscibility gap ∆φ = φ+ − φ−
and ∆V = V (φ+) − V (φ−). The quantities φ± are the
equilibrium values of the phase field, defined by the usual
tangent construction [29,30]. The interface motion is then
determined by the normal velocity vn = −∂nµ|+−.

2.2 Freely rising and stationary fronts

With appropriate boundary conditions, the model pre-
sented above can encompass the typical experimental se-
tups of imbibition, as depicted in Figure 1.

These are such that the value of the chemical poten-
tial µ(x, y = 0) = α0 6= ᾱ is imposed at the bottom
end while the top end of the system is kept dry (i.e.,
∂yµ(y → ∞) = 0 and φ(y → ∞) = −1). This concept
can easily be explained by a simplified situation where the
quenched field α(x) is homogeneous and equal to a con-
stant ᾱ. In this case, an equilibrium interface would be
obtained by letting µ = −ᾱ throughout the whole system,
with φ± = ±1. On the other hand, imposing the bound-
ary condition µ(x, y = 0) = α0 creates an imbalance in
the chemical potential causing the interface to advance. If
the interface at time t is at a height H(t), the chemical
potential, as given by the Laplace equation, is

µ(x, t) = µ(y, t) = α0 − (ᾱ− α0)
y

H(t)
, for y ≤ H;

µ(y, t) = −ᾱ, for y > H, (4)

resulting in a time evolution 1

dH(t)
dt

=
ᾱ− α0

2H(t)
· (5)

1 This is valid only if ᾱ−α0 � 1. A more complete expression
is given in Appendix A.
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Fig. 1. Setup of the imbibition model. The system is defined on the plane y > 0, with lateral extent L. The average position of
the interface is represented by H(t). The chemical potential obeys Laplace’s equation in the bulk ∇2µ = 0 with Gibbs-Thomson
boundary condition µ = −α(x)− σ∂2

xh(x, t) at the interface and the imposed value µ(y = 0) = α0 = 0 at the bottom.

Thus, the further the interface is from the reservoir, the
smaller its velocity. This classical result, known as the
Washburn equation, is well-established experimentally, al-
though discrepancies may arise [22–24,31].

A slight modification to the model can be used to
reproduce the experimental setup of Horváth and Stan-
ley [13]. In their experiment, the interface is forced to stay
at a fixed mean height H by constantly pulling down the
paper towards the reservoir of liquid. Within the phase
field model it is easy to add a constant downward drift
v = −vŷ, so that

∂tφ(x, t) + v·∇φ(x, t)

= ∇2
[
−φ(x, t) + φ3(x, t) −∇2φ(x, t) − α(x−vt)

]
, (6)

keeping the same boundary conditions as for the freely
rising column. Thus the interface between the wet and the
dry region is kept at a height H where a rising interface
would have a velocity −v, or

H=
ᾱ− α0

2v
· (7)

2.3 Equation of motion and correlation length

In presence of quenched disorder, via the field α(x), the
interface will start to roughen, as shown in Figure 2. An
immediately noticeable feature is that the interface looks
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Fig. 2. Front configurations of a rising interface at equal time
intervals ∆t = 103. Their average separation becomes smaller
as the front slows down due to the conservation law.

extremely rough locally but appears smooth on large
length scales. This should indeed be expected intuitively,
since the physics of the phenomenon is such that parts
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of the interface ahead of the average interface position
have a smaller instantaneous local velocity. They are thus
eventually “caught up” by the average interface. Likewise,
retarded parts of the interface tend to catch up with the
average interface position. This idea is indeed confirmed
by the numerical results, and can further be used to define
the spatial range over which the correlated roughness may
be seen.

A key step in understanding the physics consists in
writing an interface equation for the present model. A
single-valued one dimensional interface y = h(x, t) is as-
sumed, and the Green’s function of the problem is defined
through the relation

∇2G(x, y|x′, y′) = − δ(x− x′) δ(y − y′), (8)

for the range −∞ < x, x′ < ∞, 0 < y, y′ < ∞, with
Dirichlet boundary conditions. The half-plane must be
used, since the presence of an “infinite reservoir” at posi-
tion y = 0 breaks the translational symmetry in y. With-
out any loss of generality, α0 = 0 is set from now on. The
standard procedure [29,32,33], exposed in Appendix B,
may then be followed to obtain the integro-differential
equation of motion∫ ∞

−∞
dx′ G(x, h(x, t)|x′, h(x′, t))

∂h(x′, t)
∂t

=

η(x, h(x, t)) + σK (9)

with the half-plane Green’s function

G(x, y|x′, y′) =
1

4π
ln

(x− x′)2 + (y − y′)2

(x− x′)2 + (y + y′)2
· (10)

The quenched noise is written as η(x, h) ≡
∫

dyφ′0(y −
h(x, t))α(x, y) ∼ 2α(x, h) in the sharp interface limit. The
Gibbs-Thomson boundary condition, µ|int ∼ K can be im-
mediately obtained from equation (9) in the limit ḣ = 0
since η is the chemical potential at the interface. Analo-
gous non-local equations will arise in the context of direc-
tional solidification, pattern selection in Laplacian fluid
flow [34] and step growth [35]. The novel features here
are the broken translational invariance and the presence
of quenched noise. The interface fluctuations are thus inti-
mately coupled to both the average position and the aver-
age velocity of the interface, a result that comes out self-
consistently from the model. This is quite different from
local types of equations or models. It should be particu-
larly noted that the presence of a conservation law does
not result in a “conserved” interfacial equation. Likewise,
nonlinear equations with long range kernels [36] do not
apply to the situation encountered here.

The difference between local models and equation (9)
becomes even clearer if the interface is linearised in
small deviations around the mean interface position H(t)
to obtain

ḣk
(

1− e−2|k|H
)

+ |k|Ḣ hk
(

1 + e−2|k|H
)

=

|k|
(
{η(t)}k − σk2hk

)
, (11)

where hk are the Fourier components of h and H = h0

is the average interface position. Note that the interface
configuration enters the disorder term in equation (11) in
a fundamentally nonlinear way,

{η(t)}k ≡
∫
x

e−ikxη(x, h(x, t)). (12)

This equation already yields important information
for the roughening process. For example, the limit k → 0
reproduces the slowing down of the front as given by
equation (5). It also reveals the different length scales in
the problem. The average height of the interface separates
two regimes of lateral scale. For |k|H � 1, equation (11)
becomes

dhk
dt

+
1
H

dH
dt

hk +
σ

2H
k2hk =

1
2H
{η(t)}k, (13)

and in the opposite short scale limit, kH � 1

dhk
dt

+ |k| dH
dt

hk + σ|k|3hk = |k|{η(t)}k. (14)

The average interface height H is thus also a lateral
length scale. If two points are separated by a distance
r � H, they are not connected through the bulk of
the system and receive liquid from the reservoir indepen-
dently. In that sense, the dynamics of the interface on
larger scales is local, although the slowing down of the
interface is inherently a non-local phenomenon, reflecting
liquid transport through the medium. In the opposite limit
of r� H, the two interface points will be coupled through
the bulk and compete for liquid coming from the same re-
gion behind the front. The dynamics of the interface then
becomes fully non-local.

However, in both limits the damping terms induce a
separating length scale ξ× = (σ/Ḣ)1/2 = (σH/ᾱ)1/2. For
ξ×k � 1 the fluctuations of the interface are damped due
to the line tension σ, while for ξ×k � 1, it is due to flow
from the reservoir. By this mechanism, it is expected that
the front is smoother on length scales larger than ξ× as
compared to smaller scales.

This length scale is closely related to the Mullins-
Sekerka instability of driven Laplacian fronts [37], al-
though the situation is reversed here. Because fluid is
transported towards the front from behind, advanced (re-
tarded) parts of the interface receive less (more) mass than
the average and the front is stabilised at long length scales.
This result can intuitively be understood as follows. Due
to the Gibbs-Thomson effect a local “bulge” of vertical
extent W and lateral size ξ alters the chemical potential
by ∆µ ' σW/ξ2. On the other hand, the average gradient
in µ in the bulk liquid induces a difference ∆µ ' ᾱW/H
across a vertical distance W . These two differences bal-
ance each other at a length given by

ξ× '
√
σH/ᾱ. (15)

The length scale ξ× is a static quantity, but in a rising
liquid column it becomes dynamical through the time de-
pendence of H(t), i.e., ξ× = ξ×(t) ∼ (H(t))1/2 ∼ t1/4. It
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must also be noted that it is not a truly dynamical correla-
tion length in the sense of kinetic roughening theories [1].
However, it is a time dependent upper cutoff for corre-
lated fluctuations increasing with time, and therefore can
be interpreted as a dynamic correlation length.

To draw any further analytical conclusions from equa-
tion (11) is extremely problematic due to the difficul-
ties encountered with the quenched noise {η}k (which are
analysed e.g. in [38]). Furthermore, equation (11) is a lin-
ear approximation to equation (9). Although the length
scales come out correctly, it cannot be expected a priori
that the correct scaling properties of the interface will be
obtained. An analysis along the lines of reference [38] may
prove insufficient, and simplified treatments, such as those
attempted in reference [21] are inadequate.

3 Numerical analysis

The interface fluctuations in the presence of quenched dis-
order were analysed by numerical integrations of equa-
tion (2) and equation (6). The position of the interface
h(x, t) at each x was defined by the zero of the phase field,
i.e. by φ(x, h(x, t)) = 0 determined by linear interpola-
tion between the points of the numerical grid. Overhangs,
appearing for strong disorder but otherwise absent were
ignored by taking the lowest or highest zero of φ above a
given foot point x. No quantitative differences were seen
between these two choices.

The disorder α(x) is an independently distributed ran-
dom variable on each grid point, with mean ᾱ, standard
deviation ∆α and chosen from different types of distribu-
tions (Gaussian, uniform on a finite interval, and expo-
nential). Without loss of generality, the lower boundary
condition is chosen such that µ(x, y = 0) = 0, leading to
φ(x, y=0) = φ0, with φ0 the solution of −φ0 + φ3

0 = ᾱ.
To evaluate any scaling behaviour the first quantities

of interest are the total width of the front,

W 2(t) = 〈(h(x, t) −H(t))2〉, (16)

and the related spatial two-point correlation functions of
the q th moments

Gq(r, t) = 〈|h(x+ r, t)− h(x, t)|q〉1/q. (17)

The case q = 2 is directly related to the structure factor
S(k, t) = 〈hk(t)h−k(t)〉. In the above equations the brack-
ets denote an average over different realisations of α, and
the overbar a spatial average over the system. In presence
of a stationary state also temporal averages can be taken.

The standard Family-Vicsek scaling assumption rests
on a dynamical correlation length ξt ∼ t1/z where z is the
dynamical exponent, related to the decay of fluctuations
along the interface. The maximal value it can attain is the
system size L at which point the interface is said to be
in a “saturated” stationary state. The two-point correla-
tion function then has a scaling form G2(r, t) = rχf(r/ξt)

where f(u) = const. for u � 1 and f(u) ∼ u−χ for
u � 1, a form which introduces the roughness exponent
χ and defines the associated growth exponent β = χ/z.
The structure factor has a corresponding scaling form,
S(k, t) = s(kξt)/k1+2χ with the scaling function s(u) con-
stant for u� 1 and s(u) ∼ u1+2χ for u� 1.

This picture may turn out to be incomplete or even
wrong for the following reasons. First, the structure fac-
tor may contain an explicit time dependence besides ξt,
S(k, t) ∼ t2κs(kξt)/k1+2χ, which is sometimes referred to
as intrinsic anomalous scaling [39]. Second, if the inter-
face is superrough, a case characterised by χ > 1, then
G2(r, t) ∼ ξχt (r/ξt)χloc with a local exponent χloc = 1,
since, by construction, G2(r) cannot increase faster than
r [40]. In contrast to the standard Family-Vicsek picture,
in both these cases the correlation function for r < ξt
do not saturate as long as ξt increases [1]. This can be
parametrised by the scaling of the local slopes G2(r =
1, t) ∼ t(χ−χloc)/z. Third, the lateral ξt and the vertical
scale W may not be enough to characterise the interface
fluctuations, and different moments of Gq may possess dif-
ferent scaling exponents Gq(r) ∼ rχq (see e.g. [41]).

The interface scaling behaviour may also be observed
in the temporal correlation functions

Cq(t) = 〈|h(x, t+ s)−H(t+ s)− h(x, s) +H(s)|q〉1/q,
(18)

which increase as Cq(t) ∼ tβq at short time differences t.
Of course, this definition makes only sense in a steady
state, under time-translational invariance. It therefore ap-
plies to the analysis of equation (6), where the average
interface height is kept fixed by pulling down the paper at
constant velocity v.

3.1 Freely rising fronts

In this subsection, the classic imbibition experiment is
considered. A liquid front is allowed to invade the porous
medium starting from a reservoir placed at y = 0. Succes-
sive configurations obtained from numerical integration of
equation (2) are presented in Figure 2. The time differ-
ence between the curves is constant (∆t = 103), and the
slowing down of the interface positions becomes apparent
from the fact that they lie closer together the higher the
front gets.

In the presence of quenched disorder α(x) the total
width of the interface increases as a power of time. Fig-
ure 3 shows that W (t) ∼ tβ with β ≈ 0.3. In the same
graph the progression of the average interface height H is
seen to follow Washburn’s behaviour as expected from the
analytic arguments.

It turns out to be impossible to determine the global
roughness exponent χ from its definition in terms of the
dependence of the saturated width on the lateral system
size. Instead, the structure factor S(k, t) is used. It is plot-
ted in Figure 4 for a system of size L = 256, with ᾱ = 0.2
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Fig. 3. Increase of the width of the interface as a function
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and ∆α = 0.2 at various times 103 < t < 5× 104 (in
the dimensionless units of equation (2)), corresponding
to heights ranging from 20 < H < 100. Although it is
difficult to obtain good statistics for this quantity, im-
mediately apparent is a strong power law decay, S(k) ∼
1/k1+2χ, with a global roughness exponent χ ≈ 1.25, and
a crossover to a plateau corresponding to distances larger
than the time-dependent correlation length ξ×(t).
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identical to those of Figure 4. The anomalous scaling is indi-
cated by the increase of the average mean step height G2(r =
1, t) and the local exponent χloc ∼ 0.9. In the inset, the data
are rescaled according to equation (19). The scaling shows the
existence of a lateral length scale ξ ∼ t1/4.

The form of the structure factor indicates the pres-
ence of anomalous scaling; with χ > 1 the surface is
superrough [1] and the spatial correlation functions will
reflect this fact. The level of S(k, t) in the region of
the power decay also seems to increase with time, i.e.
S(k, t) ∼ tθ/k1+2χ, with θ ≈ 0.05, which could indicate
the presence of intrinsic anomalous scaling [39]. A clear
identification of this regime is however quite difficult, due
to the very slow increase in time and to poor statistics.

The anomalous form of the scaling is most visible in the
two-point spatial correlation function G2(r, t) as shown
on Figure 5 for the same data as for the structure factor.
The correlated roughness of the interface is visible up to
a length scale rmax ∼ ξ×(t), and the average mean step
height G(r = 1, t) ∼ ξχ−χloc

× ∼ t(χ−χloc)/4 [1,39].
The average driving force ᾱ affects the scaling of

the structure factor and correlation length only through
the correlation length ξ×(t) ∼ (t/ᾱ)1/4, and the total
strength of the noise ∆α only influences the amplitude of
the prefactor of the correlation function. The correlation
function may be fitted to the function

G2(r, t) = ∆αξχ×g(r/ξ×), (19)

with χ = 1.25 and a scaling function g(x) = xχlocf(x)
with f(x) ∼ x−χloc for x� 1, and approaching a constant
for x � 1. There seems to be no simple explanation why
∆α enters equation (19) in a linear way even beyond the
linear approximation of equations (13) and (14) where it
is easy to see. The local scaling exponent χloc ' 0.9 is
a direct consequence of anomalous scaling 2. Likewise,

2 In principle χloc = 1 for a superrough interface. However,
here the scaling behaviour in S(k, t) appears only over a rela-
tively short range and finite size effects are pronounced.
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the structure factor may be described by the scaling form

S(k, t) =
s(kξ×)
k1+2χ

, (20)

where the scaling function s(x) is constant for x � 1
and s(x) ∼ x1+2χ for x � 1. The scaling behaviour can
be seen in the inset of Figure 5, where the scaled form
of the correlation function is shown for a single system
of L = 256, with ᾱ = ∆α = 0.2 at various times and
in Figure 6 where the scaled correlation function is now
shown for systems of similar lateral extent but different
values of the driving force and strength of disorder. Within
this scaling picture, the early time development of the
width follows W (t) ∼ ξχ× ∼ tχ/4 ≡ tβ yielding a growth
exponent β = χ/4 ≈ 0.31 in good agreement with the
direct numerical estimate.

3.2 Fronts at fixed height

The results presented in the last section indicate a scaling
picture to be valid in the freely rising case. It is however
difficult to obtain sufficient statistics and larger samples
of quenched disorder replicae are necessary to get accurate
data. This difficulty can be overcome by considering the
stationary interface, as described by equation (6). In this
case, the interface fluctuations reach a steady state and the
various correlation functions can be obtained with greater
accuracy. This setup also allows the investigation of height
difference temporal correlation functions and permits a
comparison with the experimental results of Horváth and
Stanley [13].
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Fig. 7. Spatial height difference correlation functions for a
setup with fixed average height H = 50, and α(x) uniformly
distributed on the range [0, 0.4). The data for L = 100, 200
and 400 fall together (top curves), while small systems show L
dependence (L=50, 25 and 12, middle to bottom).

Equation (6) was integrated numerically for different
values of mean height H = ᾱ/2v (see Eq. (7)). Differ-
ent lateral system sizes were used between L = 12 and
L=400. The total vertical extent of the lattice was taken
to be about 50 length units higher than the interface, to
prevent any influence of the upper boundary. The mean
value ᾱ = 0.2 in all cases, but different distributions were
used: (i) a uniform distribution with mean ᾱ = 0.2, on
the range [0, 0.4) (standard deviation ∆α = 0.07), (ii) the
same, but on the range [0.1, 0.3), (∆α = 0.03 ), (iii) an
exponential distribution with average 0.2 (∆α = 0.2). Dif-
ferent numbers of configurations were used in taking the
averages, from 10 in the largest systems (L= 2H = 400)
to 100 in the smallest (L= 2H = 50). Even in the largest
systems, saturation of the interfacial fluctuations became
apparent after times t ' 2 × 104. All systems were inte-
grated up to t = 105, with the interface configurations
extracted at time intervals ∆t = 100.

3.2.1 Spatial correlations

Along with the height H, the length scale ξ× also remains
fixed in this setup, since it is related to the driving ve-
locity through ξ× ∼ v−1/2 ∼ H1/2. Thus, contrary to the
standard picture of kinetic roughening, the saturation of
the interface is not necessarily determined by the total
lateral extent L of the system. Here, the correlations sat-
urate at either the system size L or the correlation length
ξ×, whichever is smaller. Figure 7 shows data obtained
for H=50 on system sizes L=12, 25, 50, 100, 200 and 400.
The curves for L = 100, 200 and 400 collapse indicating
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proportional to k−3.5, indicating a global roughness exponent
χ= 1.25. The large scale cutoff k∗ ∼ 1/ξ× decreases with H.
The inset shows the approach of S(k, t) to the saturated S(k)
in the system of size L= 2H = 400 and for times t= 2n × 102

with n = 0, 1, ...7.

that the fluctuations are bounded by the L independent
length scale ξ× (50<ξ×<100 for this particular case).

The structure factor S(k,H), shown in Figure 8, also
has a pronounced power law decay k−(2χ+1) with a global
roughness exponent χ = 1.25. Again, the interface is su-
perrough. As in the freely rising case, there also seems to
be a very weak intrinsic anomaly in the sense of [39], i.e.
the prefactor of S(k,H) in the power law region depends
on H. The data are consistent with Hθ for 0≤θ≤0.1, but
not accurate enough to draw any firm conclusion here.

Provided that ξ× <L the spatial correlation function
G2(r,H) follows the scaling form

G2(r,H) = ∆α v−χ/2 g(rv1/2). (21)

with the scaling function g(x) defined as in equation (19).
For all different setups, L = 50 to 400, H = 25 to 200,
and all three choices for the disorder α(x), G2(r,H) is
shown rescaled according to equation (21) in Figure 10.
For small distances r<ξ× the spatial correlation function
is of the form G2(r) ∼ rξχ−1

× , yielding a local roughness
exponent χloc≈1 and a height difference at fixed r growing
as ξχ−1

× [1] (see Fig. 9).
Finally, the different moments q = 2, 4 and 6 of the

correlation functions Gq(r) can be compared, as shown in
the inset of Figure 9. All moments have a local exponent
χloc ∼ 0.95. The global exponent χq can in principle be
obtained from the short distance scaling of Gq(r = 1) ∼
ξ
χq−1
× . The present data point to a similar value χq = 1.25

for all q′s but are however too noisy to draw any definite
conclusion. Thus, the interface is probably truly self-affine
up to the crossover scale — be it the system size L or the
saturation length ξ×.
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Fig. 9. Correlation function G2(r) for the same data as in Fig-
ure 8. The curves saturate at a length ξ× which increases with
H, together with the “step height” G2(r=1). The local scaling
exponent χloc ≈ 0.95, close to the expected value χloc = 1. In
inset, the higher moments of the correlation function Gq(r,H)
are shown for a system with L = 200 and H = 50. All moments
have the same local exponent χloc,q ≈ 1.
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Fig. 10. Scaling plot of G2(r, v)/(∆α ξχ×) vs. r/ξ× with global

roughness exponent χ= 1.25 and ξ× ∼ v−1/2 ∼ H1/2. A wide
range of H, from 25 to 400, and all three forms of disorder are
used. The data compare well to the scaling relations derived in
equation (21).

3.2.2 Temporal correlations

Before the interface fluctuations reach the steady state
they are governed by an increasing dynamical correlation
length. Starting from a flat front h(x, t = 0) ≡ H it is
observed to grow roughly as ξt ∼ t1/3 and then approach
ξ×. However, this behaviour could not be analysed in much
detail, due to the short time range of the initial power
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Fig. 11. Correlation functions C2(t) for L = 400 and H =
50, 100, 200 (solid curves). The crossover time ts and the level
of saturation increase with H. At short times C2(t) decreases
with H. In inset, C2(t) for L=50 and H=100 (dashed line) is
compared to C2(t) for L=400 and H=100 (solid curve). The
transition to the saturated regime is sharper for smaller L.

law and to poorer statistics (averaging over time is not
possible). The insets in Figure 8 shows S(k, t) approaching
the saturated regime for the large system, L=2H=400.

Next, the correlation functions C2(t), shown in Fig-
ure 11 for different heights are compared, as in the ex-
periments of Horváth and Stanley [13]. In both cases, the
crossover time ts between the power law regime of C2(t)
and saturation increases with H. This is true for the level
of saturation (or the width W ) as well. At early times
t� ts, the absolute value of C2(t) decreases with H.

The data can be related to a scaling function of the
form

C2(t) ∼ Hχ/2f(t/Hz/2), (22)

with the scaling function f(x) ∼ xβ2 for x� 1 and const.
for x� 1 with a (genuine) dynamical exponent z ≈ 2 and
the effective slope β2 ≈ 0.85. Although the exact value
of these exponents is difficult to establish, this form is
however valid for all L provided that ξ× < L.

The different moments Cq(t) for q = 2, 4 and 6 are
shown in Figure 12. They clearly have different behaviour.
The early time logarithmic slopes of the higher moments
(βq) decrease with q, as shown in the inset of Figure 12.
For the higher moments, the effective exponents β4 ≈ 0.76
and β6 ≈ 0.69. Such multiscaling has been observed in
cases connected with the existence of avalanches in the
interface dynamics [42]. It is clear from Figure 2 that
similar avalanche type of motion exists here as well, but
only up to the vertical length scale W and lateral size ξ×.
Because of this reason the quantitative characterization of
such avalanches is beyond the scope of the present work.
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Fig. 12. Correlation functions Cq(t) for q = 2, 4 and 6 for
systems of size L= 200 and H = 50, such that L > ξ×. Each
moment increases with a different exponent βq .

4 Discussion

4.1 Temporal scaling of the interface and relation
to experiments

It is interesting to first compare the results for the sta-
tionary fronts with those of the freely rising fronts. Both
cases are governed by the same height dependent length
scale ξ×. In Figure 13 the spatial correlation function
G2(r,H) (fixed H at saturation for the stationary case)
and G2(r, tH) (freely rising case at times tH = H2/ᾱ when
the average height has reached H) are shown for various
values of H. There is a complete equivalence between the
interfacial fluctuations at an instantaneous height H(t)
and the saturated fluctuations of a stationary interface.
In both cases, the range of correlated roughness is deter-
mined by the same value ξ×. The length scale ξ× is thus
conceptually different from the intrinsic time dependent
lateral correlation length ξt commonly found in models
of kinetic roughening. Here ξ× merely fixes the maximum
range of correlated roughness. Such “quasi-stationarity” of
the moving front can only occur provided that the “natu-
ral” dynamical exponent z < 4, so that the interface fluc-
tuations can always catch up instantly with the available
area of correlation.

The model can also help to interpret the experiments
performed by Horváth and Stanley on the stationary inter-
face [13], since it yields qualitatively similar results: The
exponent β2 is constant for all driving forces (and also βq
for the higher moments considered), the level of saturation
of C2(t) increases as H increases, while the amplitude of
the early time power law behaviour decreases.

Still, there is a quantitative difference between the ex-
periments of [13] and the numerical results. In the present
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to G2(r, tH) in the freely rising case (dashed lines) at corre-
sponding times tH = H2/ᾱ. There is a complete equivalence
between both situations.

work, β2 = 0.85 in contrast to the experimental value
0.56. Clearly one would not expect coincidence, since al-
ready the average front velocity behaves differently: The
model shows “pure” Washburn behaviour, dH/dt∼ 1/H,
whereas in [13] dH/dt ∼ H−1.6. This deviation from
Washburn’s law occurs in many paper imbibition experi-
ments [24], and there is no reason why its origin should not
affect the intrinsic fluctuation dynamics as well, leading to
different values of βq in the time correlation functions.

There is however a clear contradiction of the results
with the scaling form for the time-correlation function sug-
gested in [13],

C2(t) ∼ V −θLLχ C(tL−χ/βV (θt+θL)/β) (23)

with the relation V = dH/dt ∼ H−1.6 and the scaling
function C(u) such that C2(t) ∼ tβV θt if u � 1 and
C2(t) ∼ LχV −θL in the opposite limit. Equation (23) does
not include an explicit lateral length scale ξ×, although
some power of V θt+θL may obviously play such a role. This
scaling form is however in contradiction with the present
results in two ways. First, provided that ξ× < L, the total
lateral system size does not play any role in the scaling
of the interface. Secondly, no common scaling form inter-
polating from large systems (fluctuations up to scale ξ×)
to small systems (dominated by L) has been found. The
saturation of C2(t) is sharper for small L, which is visible
in Figure 11.

In the experiments only one lateral system size was
used, so the role of the system size L could not be assessed.
Unfortunately, no information on the spatial scaling of
fluctuations was presented so that no comparison can be
done to the present work. Likewise, the higher moments of

the temporal correlation function were not measured and
the presence of avalanches could not be inferred.

4.2 Avalanches, pinning and roughness of the interface

As one can see from Figure 2 the interface motion indicates
the presence of “avalanches” as in usual models describing
depinning transitions [2]. Here the behaviour is however
somewhat different since the flow of liquid in the average
tends towards regions of lower chemical potential. In some
way, this is analogous to “self-organised” interface models
in which the interface is driven at the point where the
force is the largest [42–44].

The question is now whether it is possible to under-
stand the observed exponents — χ, βq etc. — in terms of
an avalanche description. Were this to be true, the pres-
ence of the conservation law would only be felt through
the correlation length ξ×, which would limit the avalanche
area to ξχ+1

× with an exponential cut-off on the avalanche
size distribution (see [7] for a discussion of a related ex-
periment). It turns out that the multiscaling observed
here (βq) differs in a crucial way from that obtained
for avalanches in self-organised depinning. Leschhorn and
Tang [42] obtain an almost trivial multifractal spectrum
for the βq’s assuming that a local dynamical exponent zloc

and a global roughness exponent can be defined. Dynam-
ical scaling in this sense is however absent in the present
case, since the interface dynamics depends directly on the
local height.

The observed global roughness exponent χ = 1.25 also
appears in “nonconserved” front propagation through a
medium with quenched disorder [45–47], i.e. for interfaces
in the quenched Edwards-Wilkinson (QEW) universality
class. In that problem a similar value of χ is observed
close to criticality, whereas a cross-over to thermal EW
(the massless Gaussian field, with χ = 0.5) takes place in
the moving phase. The imbibition model may then present
a similar behaviour due to the continuous slowing down
of the interface, with parts of the interface pinned (thus
approaching the depinning transition from above). As in
the QEW class, the value χ = 1.25 means that the width
increases faster than the correlation length. The “local
slopes”, G2(r = 1, t) ∼ ξχ−χloc

× (t) diverge with time and
the local roughness exponent χloc ≈ 0.9 . . .0.95. For QEW
models this is true on any scale — up to saturation in a fi-
nite system — but in our case the behaviour can hold only
up to W ' ξ×, because the removal of overhangs occurs
naturally in a phase field formulation. If W > ξ× over-
hangs in neighbouring bulges of the interface can merge,
always keeping ξ× of the order of W .

A possible mechanism by which the roughness might
change is if the interface becomes completely pinned. In
Appendix A, it is shown that this may be achieved through
the inclusion of either evaporation or gravity. In such a
case, new length scales come into play, and the roughness
exponent is most likely changed.

Although the pinning effects of evaporation have not
been explicitly considered in this work, preliminary cal-
culations show that evaporation, characterised by an
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evaporation rate ε introduced in the Appendix A, pins
the interface at a height Hp ∼ (ᾱ/ε)1/2. At this pin-
ning height, a new correlation length ξε emerges. For
weak evaporation, defined as ε � ᾱ3/σ2, the length ξε ∼
(σ/ε)1/3 � ξ×(Hp). For strong evaporation, ε � ᾱ3/σ2,
this length is ξ× ∼ (σ/εHp)1/2 ∼ ξ×(Hp). This question,
as well as the appearance of ξ× itself, has not been ad-
dressed by previous models and experiments [24].

Within this region, there should be a crossover from
the superrough interface with χ = 1.25 to a pinning
regime. The roughness exponent on scales below the cor-
relation length should then be determined solely by the
local disorder configuration, i.e. be related to e.g. directed
percolation depinning.

4.3 Hydrodynamical description of imbibition

The model presented in Section 2 is purely diffusive and
does not include any hydrodynamical modes. In prin-
ciple, these could be incorporated, in a coarse-grained
sense, along the lines of references [33] and [48] by cou-
pling the phase field to a velocity field described by the
Navier-Stokes equations. Unfortunately, many problems
need to be resolved before such an approach is taken, the
main one consisting in establishing the role of hydrody-
namics itself [24]. Contrary to other porous media like
fractured rock or Hele-Shaw cell filled with glass beads,
the paper matrix used in most imbibition experiments is
not inert but often interacts strongly with the invading
fluid through fiber swelling. Another complication arises
from the transport of fluid through the paper. It is not
at all obvious that an homogeneous pressure can be de-
fined throughout the volume occupied by the fluid. In that
sense, the model defined by equation (2) and (6) is the
minimal model that includes a conservation law and, in
conjunction with the appropriate set of boundary condi-
tions, reproduces the experimental characteristic of imbi-
bition.

Even though hydrodynamics is absent there is how-
ever of course a strong similarity between the model
and the standard description of flow in porous media
based on Darcy’s Law for an incompressible fluid. In this
description, the normal velocity of the interface is re-
lated to the gradient in the pressure field P (x) by the
permeability κ as vn = −κ ∂nP (x, y = h(x, t)). The
pressure is determined from Laplace’s equation, together
with P (x, y = 0) = P0, the atmospheric pressure, and
a Gibbs-Thomson boundary condition at the interface:
P (x, h) = P0 − Pc(x, h(x, t)) − γ∇2h(x, t), which intro-
duces a coarsed-grained surface tension [34] and capillary
pressure Pc arising from the microscopic menisci at the
fluid-gas interface. Working to linear order in the small
fluctuations of the interface, it is straightforward to find
the pressure field, defined for y ≤ h(x, t),

P (x, y) = P0 − P̄c
y

H
+
∑
k

eikx sinh(ky)Pk, (24)

with the coefficient

Pk =
1

sinh(kH)

((
γk2 − P̄c

H

)
hk − Pc(k 6= 0,H)

)
,

(25)

where P̄c represents the average capillary pressure and
Pc(k 6= 0,H) the fluctuations around it. It is then a sim-
ple matter to derive the interface equations, equations (13)
and (14) in the appropriate limits. The derivation of the
length scale ξ× may be transposed directly to the fluid im-
bibition case. This is essentially equivalent to the approach
of reference [21] (see also [17]), although spontaneous im-
bibition requires a special treatment of the boundary con-
ditions, absent in their work.

Our model is based on a constant mobility, which in the
general case should be replaced by ∂tφ = ∇M(x)∇µ(x, t).
In spite of its simpleness, it is quite reasonable to ask
whether the quenched randomness should not be included
in the mobility, to model an effective quenched perme-
ability. In most cases of forced fluid flow in bulk random
media, this is where the non-uniformities are most rele-
vant [49]. One point must however be emphasised. In any
imbibition experiment designed for this purpose, the flow
will never be large, and we believe that the random capil-
lary forces will have the dominant influence. On the other
hand, it has recently been shown that the presence of ink,
or presumably of any other blocking material does make
a quenched porosity relevant [31], a case which is not con-
sidered here.

It should also be pointed out that the field φ does not
represent a real fluid density. In particular, any “air bub-
bles” (i.e. connected regions of value φ = −1) trapped
behind the front will eventually dissolve. This is of course
highly unrealistic for bulk porous media, but may be ap-
propriate for thin porous media, where air can escape
through surface pores.

5 Conclusion

In conclusion, a simple phase field model for the invasion
of a liquid into a disordered system has been introduced.
Liquid conservation is explicitly included. Some basic fea-
tures observed in imbibition experiments are reproduced.
Of course, it cannot account for many phenomena of paper
wetting or invasion into porous media, which are briefly
discussed in Section 4 and treated in more detail in the
previous paper [24].

In numerical simulations, a superrough interface is
found, with anomalous scaling due to a global rough-
ness exponent χ ' 1.25 > 1. A hardly discernible inher-
ent anomaly of the structure factor may also be present.
The extent of the spatial fluctuations of the interface are
bounded by a length scale ξ× ∼ (σH/ᾱ)1/2, both in the
freely rising and stationary imbibition setup. Interface
fluctuations of a rising front are quasistationary, in the
sense that at any time t they are the same as in a station-
ary front kept at average height H=H(t). The temporal
fluctuations show multiscaling, which indicates motion by
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avalanches. The length and time scales where fluctuations
saturate can be understood by simple dimensional consid-
erations.

In relation to experiments, according to this analysis it
is highly desirable to have fluids with small capillary pres-
sure and high surface tension in order to obtain scaling
over a large spatial regime. It would also seem appropri-
ate to use organic liquids in experiments done with paper.
These have minimal chemical interaction with the con-
stituent fibers, and a simplified Washburn description of
imbibition may be applicable. Another option is to use
deionised water [31], again with the goal of reducing the
fiber-liquid interaction. Above all, the main conclusion of
the present work is that the macroscopic behaviour of the
average interface position (i.e. H(t) in a freely rising study,
or H(v) if the interface is stationary) is crucial to an un-
derstanding of the microscopic fluctuations of the inter-
face, since it controls the range over which scaling can be
observed.
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Appendix A: Refining the phase field model

In this appendix, a generalised imbibition model is intro-
duced. It rests on the following dynamical equation for the
dimensionfull phase field φ̃(r, t)

∂φ̃(r, τ)
dτ

− G̃∂φ̃(r, t)
∂y

= ∇M(φ̃)∇δF
δφ̃
− ε̃(φe + φ̃(r, τ))

(26)

with the free energy functional

F =
1
2

∫
dr
[
rφ̃2 +

u

2
φ̃4 + κ(∇φ̃)2 − α̃φ̃

]
, (27)

and φe = (r/u)1/2. For G̃ = 0 and ε̃ = 0, as well as
for constant mobility M(φ̃) = M , this reduces to the
model described in the introduction. When ε 6= 0, a non-
conserving term is introduced in the equation of motion,
which, in a first approximation describes evaporation of
liquid (the φ̃ = φe phase), at a rate 2φ2ε and propor-
tional to the total area covered by the fluid. The convective
term is included to describe gravity. Although gravity can
only be introduced properly through an hydrodynamical
field [33,48], it is shown below that this term reproduces
the correct equation of motion for the average position of
the imbibition front.

Assuming a constant mobility M , these equations can
be put in a dimensionless form by defining

x = r/ζ ; α =
[ u
r3

]1/2
α̃ ;

t =
[
Mr2

κ

]
τ ; G =

[
d κr3

]1/2 G̃
M ;

φ = φ̃
φe

; ε =
κ

Mr2
ε̃ .

(28)

The ratio ζ = (κ/r)1/2 determines the width of the inter-
faces between different phases.

For now, let us concentrate on the case G = ε = 0. In
one dimension, with ᾱ being constant, the chemical poten-
tial obeys a Laplace equation in both wet and dry phases
(actually there are minor corrections) with boundary con-
ditions, µ(y = 0) = 0 and µ(y = H) = µ(y = Ly) = −ᾱ,
where H is the position of the wet/dry interface and Ly
is the length of the paper. Thus

µ(y) =

{
−ᾱy/H, if y ≤ H;
−ᾱ, if y > H;

(29)

which implies that φ;

φ(y) =

{
φo + (1− φo) y/H, if y ≤ H;
−1, if y > H;

(30)

where φo > 1 is the solution of −φo + φo
3 = ᾱ. In a first

approximation, both φ and µ are linear functions of y for
y ≤ H. The total amount of concentration is then

Φtot(t) =
∫ Ly

0

φ(y, t)dy =
1
2

(φo + 3)H(t)− Ly, (31)

and the equation of motion for Φtot is

dΦtot

dt
=
φo + 3

2
dH
dt

=
∫ Ly

0

∂2µ

∂y2
dy, (32)

or

dH(t)
dt

=
2

3 + φ0

(
ᾱ

H(t)

)
, (33)

an equation similar to Washburn’s result. Since φ0 ∼
1+O(ᾱ), this is actually equation (5) of Section 2. In pres-
ence of gravity and/or evaporation, the solution is more
involved. As a first approximation, the difference between
φ0 and unity is neglected and the Poisson equation for the
chemical potential is considered,

d2µ

dy2
− ε = 0 , (34)

for y ≤ H(t) and boundary conditions µ(y = 0) = 0
and µ(y = H(t)) = −ᾱ. Again, µ(y >H(t)) = −ᾱ. The
solution of equation (34) is

µ(y,H(t)) = − ᾱy

H(t)
+

1
2
εy(y −H(t)). (35)
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Using the same procedure as above, the equation of motion
of the interface is found to be

dH(t)
dt

=
ᾱ

2H(t)
−G− 1

4
εH(t) . (36)

The “gravity” term acts exactly as in Washburn’s equation
in presence of gravity, and thus allows to identify G as an
effective gravity force acting on the interface. As far as
we are aware, no detailed studies of fluid propagation in
a thin porous medium with evaporation has been done.

Non-zero values of G or ε will eventually stop the in-
terface at an equilibrium height Heq = ᾱ/G if G � ε

or Heq = (α/ε)1/2 if ε � G. There is however a concep-
tual difference between pinning due to gravity or evap-
oration. In the former case, the chemical potential is a
linear function of position, and pinning is determined by
∂nµ(Heq) = G while, in the latter case, the chemical po-
tential is quadratic in y and at pinning, ∂nµ(Heq) = 0.
When both evaporation and pinning are present, the equi-
librium height is determined by the zero of equation (36).

In terms of a dimensionfull interface height H̃, equa-
tion (36) becomes

dH̃(τ)
dτ

=
1
2
Mα̃

φe

1
H̃(τ)

− G̃− 1
4
ε̃H̃(τ), (37)

where α̃ represents the average value of the disorder.
The motion of the average interface in the pure Wash-
burn case is thus determined by a combination of the
mobility M and the shift in the average chemical po-
tential α̃. The length scale ξ× ∼ (σ̃H̃/α̃)1/2 where now,
σ = (2

√
2/3)(κrφ4

e)1/2 is the dimensionfull surface ten-
sion.

Appendix B: Projection to an interface
equation

To extract the interface equation (9) in the limit G = 0
and ε = 0, the dynamical phase field equation must first
be inverted with the use of the Green’s function defined
by equations (8) and (10):∫

dx′ G(x|x′) ∂φ(x′, t)
∂t

= µ(x, t). (A.1)

It is then convenient to use a local coordinate system
(u, s) [50]. The 2-dimensional space is spanned by the the
vector x(u, s) = X(s)+un̂(s), where X(s) is a point of the
interface, n̂ is a unit vector normal to the interface and s
is the arc-length coordinate. In terms of the phase field,
this corresponds to φ(u = 0, s) = 0. The time derivative of
the field then becomes ∂φ(u, s, t)/∂t = Vn(s)∂φ/∂u where
Vn(s) is the normal velocity of the interface at position s.
If the interface (of thickness ζ = 1 in dimensionless units)
is much smaller than the typical radii of curvature of the
interface (the sharp interface limit), the Laplacian term of
the chemical potential may be expanded such that

∇2 =
∂2

∂u2
+

∂2

∂s2
+K(s)

∂

∂u
(A.2)

where K(s) is the curvature of the interface. For α = 0,
the one-dimensional kink solution is φ(u, s) = φ0(u) =
tanh(u/

√
2). The corrections to this form, represented by

equation (30) are of order ζᾱ/H. To first order thus, µ ∼
−α(u, s)−K(s)∂φ0(u)/∂u. Still in the sharp interface limit
ζK � 1, the derivatives of the kink solutions have prop-
erties ∂φ0(u)/∂u ∼ ∆φδ(u) and σ =

∫
du(∂φ0(u)/∂u)2

where ∆φ ∼ 2 is the miscibility gap and σ is the interface
tension. Multiplying equation (A.1) by

∫
du(∂φ0(u)/∂u)

then effectively project the phase field dynamics onto the
interface u = 0. A translation u→ u+ h(s, t) then yields∫

ds′ G(s, h(s, t)|s′, h(s′, t))Vn(s′) = η(x, h(x, t)) + σK.
(A.3)

Equation (9) is then obtained by a further change of co-
ordinate s→ x and the relation ds′Vn(s′) = dx′∂th(x′, t).
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Godrèche (Cambridge U.P., 1992).
31. O. Zik, T. Kustanovich, E. Moses, Z. Olami, Phys. Rev. E

58, 689 (1998).
32. J.S. Langer, L.A. Turski, Acta Metall. 25, 1113 (1977).
33. K. Kawasaki, T. Ohta, Prog. Theo. Phys. 68, 129 (1982).
34. J. Krug, P. Meakin, Phys. Rev. Lett. 66, 703 (1991).

35. G.S. Bales, A. Zangwill, Phys. Rev. B 41, 5500 (1990);
W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R.
Soc. (London) A 243, 299 (1951).

36. S. Mukherji, S.M. Bhattacharjee, Phys. Rev. Lett. 79, 2502
(1997).

37. W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35, 444
(1964).

38. H. Leschhorn, T. Nattermann, S. Stepanow, L.-H. Tang,
Ann. Physik 6, 1 (1997).
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